Generalized cohomology quotients of the symmetric functions
Darij Grinberg, Drexel University

The cohomology ring of a Grassmannian $\operatorname{Gr}(k, n)$ is known to be a quotient of the ring S of symmetric polynomials in k variables. More precisely, it is the quotient of S by the ideal generated by the k consecutive complete homogeneous symmetric polynomials $h_{n-k}, h_{n-k+1}, \ldots, h_n$. We deform this quotient, by replacing these generators $h_{n-k}, h_{n-k+1}, \ldots, h_n$ by $h_{n-k} - a_1, h_{n-k+1} - a_2, \ldots, h_n - a_k$ for some k fixed elements a_1, a_2, \ldots, a_k of the base ring. This also generalizes the quantum cohomology ring of $\operatorname{Gr}(k, n)$. I shall discuss some properties of the new quotient, such as three bases, an S_3-symmetry of its structure constants, a "rim hook rule" for straightening arbitrary Schur polynomials, and a Pieri-like rule, as well as some conjectures.